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The refraction of head seas by a long ship 

By F. URSELL 
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(Received 15 July 1974) 

It is known that head seas cannot travel without deformation along a horizontal 
cylinder of full constant cross-section. Calculations are given which indicate that 
the waves are refracted away from the axis of the cylinder. Similar refraction 
effects are found for waves generated by a pulsating source on the cylinder, and 
also for the Kelvin wave pattern generated by a long ship of nearly constant 
cross-sectiop moving with constant speed in the axial direction. 

1. Introduction 
In  an earlier paper (Ursell 1968a, hereafter referred to as 11) it was shown that 

head seas cannot travel along a long cylindrical ship without deformation. The 
first attempt to find this deformation was made in 11, 6 5, where the deformation 
along a thin wedge-like ship of great but finite length was considered. It was 
found that the amplitude of the diffracted wave near the wedge ultimately 
increases like (Kx)B, where x is the distance from the bow along the ship; this 
high amplitude is confined to a horizontal layer near the ship which increases in 
width like ( K x ) ~ .  The total wave amplitude is the amplitude of the sum of the 
incident head sea and the diffracted wave, and depends on their relative phase. 
Arguments can be given which tend to show that the relative phase in this case 
depends on the wave motion near the bow, but not on the shape of the cross- 
section of the wedge. 

A long ship of full section was considered by Faltinsen (1973)) who used slender- 
body theory and matched asymptotic expansions. He found that the amplitude 
of the diffracted wave near the ship is ultimately equal and opposite to that of 
the incident head sea, in a layer increasing like ( K X ) ~ .  Thus the total wave 
amplitude near a ship of full section tends ultimately to zero; we may say that 
the incident wave is refracted away from the ship. (The effect of forward speed was 
also considered by Faltinsen, but for the sake of simplicity it will not be con- 
sidered in problems 1 and 2 of the present paper.) 

The arguments given in these papers were not conclusive, either for the thin 
ship or for the ship of full section, but they were plausible. The differences between 
the results in the two cases remain to be reconciled. In  the present paper an 
attempt will be made to provide further evidence. The ship will be replaced by 
an infinitely long horizontal cylinder of constant cross-section on which the 
normal velocity is suitably prescribed. (The same idea will also be used to treat 
the refraction of the steady Kelvin pattern away from a long ship moving with 
constant forward speed.) For the sake of simplicity the cross-section will be taken 
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690 P. Ursell 

to be a half-immersed circle, which can be treated comparatively simply, but the 
arguments of the present work can be generalized to an arbitrary constant 
cross-section. 

Three problems to which the linearized theory is applicable will be treated. 

P r o b l e m  1.  Zero forward speed is assumed. On the semi-infinite stern section 
of the cylinder a wavelike pulsating normal velocity is prescribed while on the 
semi-infinite bow section the normal velocity vanishes. The resulting wave 
motion near the stern section is to be found; it is reasonable to hope that this 
motion will resemble the diffracted wave due to a semi-infinite ship. When the 
incident-wave potential is e-KZ eiIcx-iut the principal wave component of the tota<l 
(incident plus diffracted) wave motion near the stern section will be found to be 

where @* is the potential defined in equations (2.11)-(2.14) below. 

P r o b l e m  2. Zero forward speed is again assumed. A pulsating normal velocity 
of constant frequency is prescribed over a finite part of the cylinder, and the 
wave motion near the stern section is to be found. The principal wave component 
will be found to be of the form 

$2,K(x,  y, z )  e-ict = (A,/&) Q*(K, y, z )  eiKx--iat, 

where the constant A, depends on the details of the prescribed velocity 
distribution. 

P r o b l e m  3. A constant non-zero forward speed U is assumed, and the motion 
is steady. The normal velocity is prescribed over a finite part of the cylinder, 
and the refraction of the transverse waves of the Kelvin wave pattern along the 
stern section is to be found. The principal wave component will be found to be 

where KO = g/U2 and where the constants A, and e, depend on the details of the 
prescribed velocity distribution. 

It will emerge that the same mathematical technique is applicable to all three 
problems. Even with our restrictive assumptions a complete solution is not 
feasible, but much information can be obtained about the wave motion when 
x -+ + 00, in the stern direction. 

2. Mathematical preliminaries 
Let the x axis be horizontal and along the axis of the cylinder, the y axis 

horizontal and normal to the x axis, and the z axis vertical (z  increasing with 
depth). Also let cylindrical polar co-ordinates be defined by the equations 
y = r sin 8 and z = r cos 0 ;  then on the immersed part C of the cylinder we have 
r = a, --in Q 8 Q an and -co < x < co. It will be seen that the Fourier 
transform m 

Q(~c, y, z )  = 1 #(x, y, z )  e-ikzcix (2.1) 
- m  
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in each problem satisfies a differential equation of the form 

in the fluid, and boundary conditions 

a@/& = V ( k , 8 )  on C (2.3) 

and a@/& + F ( k )  CD = 0 on the free surface z = 0,  r > a, (2.4) 

where V ( k ,  0) is a prescribed even function of 8, and F(k)  is a known positive 
function of k. In  the present section only, let us write 

coshy(k), 0 < y < 00, when F ( k )  > Ikl, {!:! cos y l (k ) ,  0 < y1 < in-, when F(k)  < Ikl. 
F ( k )  = 

Let us consider first a value of k for which F ( k )  > Ikl . Then it is known (Ursell 
19683, hereafter referred to as 111) that @(I& y ,  z )  can be expanded in a series of 
the form 

where 

(with an appropriate path of integration avoiding the pole p = y )  is a source 
function and the functions 

Yzm(lkl,y,z,y) = K,,(~k~r)cos~mB+2coshy(k)K2,~,(~k~r)cos(~m- l ) B  
+K,_,(jk]r)cos(2m-Z)B, m = 1,2,3 ,..., (2.8) 

are wave-free potentials. It is important to determine the correct path of integra- 
tion in (2.7),  i.e. the appropriate radiation condition for large Iy I. This is found 
as follows. Let a small positive Rayleigh viscosity B be introduced, then the 
free-surface boundary condition becomes 

i?@,/az+F,(k) @e = 0 on x = 0, r > a, 

where F'(k) is complex valued and F,(k)-+J'(k) when E + O +  (i.e. when s+O 
through positive values). We write F,(k) = Ikl coshy,(k); the path for 
Yo( I k 1 ,  y ,  x ,  y,) is the positive real p axis as long as B > 0. Now let B -+ 0 + , then 
the pole y,(k)  of the integrand tends t o  y ( k )  on the real p axis. The appropriate 
path of integration in (2.7) is now chosen by the following self-evident rule: if it 
is found that y,(k)+ y (k )  from below (above) then the path of integration in (2.7) 
is taken to pass above (below) p = y .  The corresponding integral will be denoted 

Let us consider next a value of k for which F ( k )  < Ikl. The denominator in (2.7) 
is then coshp - cos y1 and is regular on the whole of the positive realp axis, which 
is therefore taken as the path of integration. The corresponding integral will be 
denoted by Yo. The wave-free potentials are defined as in (2.8), with cosy,(k) in 

by TI$ (Yi). 
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692 F .  Ursell 

place of coshy(k). In any given problem the functions y ( k )  and yl(k)  are known 
functions of k, but it will often be convenient to retain notations like Y ( 1  kl , y, z, y )  
in order to exhibit the dependence on y. 

It will be seen later that the wavenumbers of greatest interest for the flow near 
the stern satisfy the equation P(k)  = Ikl, i.e. y = 0. Then it is known (cf. 111, 95) 
that the potential @(k, y, z )  can be expanded in the form 

y 2 m (  I kl3 Y, 2, O ) ,  
Kh?r'( I k l a )  

(2.9) 
m 

@(k> Y, 2) = P O O ( ~ )  y o o (  1 kl ,  Y, 290) + ~ O l ( k )  e-lklz + C P2m(k)  
m = l  

where 

~ o o ( p J , y , z ? O )  = - exp(- Iklxcosh,u)cos(lklysinh,u)d,u, 

(2.10) 

where the integration limits are kcc with the path of integration of the first 
(second) integral passing below (above) the double pole ,u = 0. It will be observed 
that the expansion (2.9) contains one more coefficient than the expansion (2.6). 
It was shown in I1 that there is a unique potential @*( lkl, y, x )  satisfying 

; ( su +si) 1 

(2.11) 

a@.& = 0 on r = a, -in ,< 8 < in-, (2.12) 

(@+%- a 2  a 2  lk12) @ * ( l k l , y , z )  = 0 in the fluid, 

a@*/&+ lkl @* = 0 on z = 0, r > a, (2.13) 

with an expansion of the form (2.9) normalized so that poo = 1.  This potential is 
unbounded for large I y 1, 

@ * ( l k l , y , z )  N -2nIky(e-lklz as lkyyl+00, (2.14) 

and therefore has no immediate physical interpretation. Nevertheless, it will be 
seen (as has already been mentioned in the introduction) that the potential 
@,(I kl , y, z )  plays an important part in describing the waves near the stern 
section x+ + 00 when 1kyl is not large. 

We shall need the following expansions (Urselll962, hereafter referred to as I): 

%+(pl, y, 2, y )  = k 2n-i c o t h y q k l  , y, 297) + 2%'([kl, y, z, y ) ,  (2.15) 
where 9( Ikl, y, z, y )  = exp ( - Ikl z cosh y )  cos (Ikl y sinh y) ,  

9( Ik/, y, 2, y )  = - y coth y exp( - J k l z  cosh y )  cos (lkly sinh y)  
x K o ( l k l r ) + 2  2 ( - l ) m - l [ ~ ( I , ( l k / r ) c o s u O ) ]  a sinhmycothy 

m=l  v=m 

are regular functions of y near y = 0;  see I ,  equation (2.13). (It is important to 
note that Y$ -+ 00 as y -+ 0.) When y = iy, the corresponding expansion is 

YO(IkI , y, 2, iY1) = %i- c o t y l q k l ,  y, 2, iy,) + 29(Jkl, y, 2, iY1). 

It can also be shown (11, equation A.l .2)  that 

(2.16) 
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where the functions T and R are obtained from Y and 9 by differentiation and 
are evidently regular near y = 0. Angular brackets will be used to indicate that 
r is to be put equal to a after differentiation. 

By use of expansions such as (2.6) the function @(k, y, z )  can in principle be 
found for all real k. If it could be found explicitly we could $hen infer the velocity 
potential $(x, y, z )  everywhere by means of the inverse Fourier transform 

(2.19) 

Unfortunately this will not be found possible. We shall however be mainly con- 
cerned with the form of the waves near the stern section, i.e. the region where 
y and z are bounded and x++ co. Asymptotic techniques are then applicable to 
(2.19). The principal contributions come from values of k a t  which @(k, y, z )  or 
one of its derivatives ceases to be a regular function of k (cf. Lighthill 1958, 
chap. 4). On physical grounds we expect the dominant wavenumber to be K = cr2/g 
in problems 1 and 2 and KO = g/U2 in problem 3, and it will be seen that at these 
wavenumbers the function @(k, y, z )  is indeed not regular, because the condition 
P(k)  = lkl is satisfied. It will be assumed that @(k, y, z )  is regular a t  all other 
wavenumbers except k = 0. (The contribution from k = 0 is evidently not 
wavelike and will not be considered further.) 

3. Problem 1. The action of a fixed long ship on head seas 
Let us begin by considering a fixed ship of great but finite length, and let us 

suppose that its parallel middle-body is a horizontal cylinder of semicircular 
cross-section. Let a regular wave train 

(3.1) 
$inc e-krt = e-Kz eiKx--int 

be incident on the ship from the negative x direction. The potential $dm e-ifft of 
the diffracted wave then satisfies 

+ d i E ( ~ ,  y, z )  = 0 in the fluid, 

with the boundary conditions 

= - a(e-KaeiKx)lan on the ship (3.3) 

and ( K  + a/&) = 0 on the mean free surface z = 0, (3.4) 

where K = a2/g. There is also a radiation condition, which states that $dB 

represents outward-travelling waves at infinity. For a derivation of these equa- 
tions see Lamb (1932, 3 227). The factor e-iut will henceforth be omitted in this 
and the following section. 

The boundary-value problem which has just been formulated cannot be readily 
solved, and we therefore now replace it by a simpler problem relating to a simpler 
body. The long but finite ship is replaced by a horizontal cylinder of uniform 
semi-circular cross-section extending from x = -a to x = +a. We consider 



6 94 F .  Ursell 

a potential $,(x, y, z )  satisfying the equation of continuity (3.2) and the free- 
surface condition (3.4). The boundary condition on the cylinder is taken to be 

a$@ = - eiKx h(x) ae-Kz/ar on r = a, (3.5) 

0 on the forward part - co < x < -1, I I on the near part 1 < x < co, 
where h(x)  = 

and where h(x) is chosen to be an infinitely differentiable increasing function on 
the middle part - 1 < x < 1. It will be seen later that our results are independent 
of the precise form of h(x). For large positive x we may then reasonably expect 
4, to behave like the diffracted wave from a semi-infinite (or a long but finite) 
ship. 

To solve this boundary-value problem, a Fourier transform with respect to x 
is used. Let us write 

Q l ( k ,  y, z )  = r$l(x, y, z )  e--ikr dx. 

Then Q, is defined in the fluid region ( r  > a,  - +n < 0 < +n) of the y, z plane. We 
evidently have (6 + - k2) Ql(k ,  y, z )  = 0 in the fluid, (3.7) 

with the boundary conditions 

and a@,/az+ KQ, = 0 on the free surface z = 0, r > a. (3.9) 

cosha(k) when Ikl < K ,  

K = {!:I cosa,(Ic) when lkl > K ,  
Let us write 

(3.10) 

(3.11) 

cf. (2.5) above. As was explained in 3 2,  we must now find the correct path of 
integration for the source function Yo. When the small Rayleigh viscosity e is 
introduced, we find by a simple calculation (which is omitted) that the free- 
surface boundary condition for @ l E ( J C ,  y, z )  becomes 

aa>,,/az = - ( K  + &g) Ole. 

The parameter a,(k) is determined from the equation 

Ikl cosha,(k) = K+&/g. 

It is evident that a,(k)+a(E) from above as E +  0 + ,  thus the appropriate source 
function is Y; for all wavenumbers k satisfying Ikl < K.  We now follow the 
procedure of $2,  in order to determine the analytic behaviour of Q ( E ,  y, z )  near 
k = K .  

(3.12) 

As we have just seen, in the range 0 < Ic < K we have 
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where from the boundary condition (3.5) on the circle we must have 

i.e. 

27ricothcrT (k ,8)+2R(k ,8)  

This may be regarded as an expansion of the left-hand side of (3.15) in terms of 
the set of functions in angular brackets on the right-hand side of (3.15). The 
latter functions are evidently regular functions of 8 and also of k near K ,  but we 
note that coth 01 = K / ( K 2  - k2)$ has a branch point at  k = K ,  while H ( k  - K )  has 
a simple pole [see equation (3.20) below]. We also note that the functions 

(a  a e-KZ/ar) = - K a  cos 8 exp ( - K a  cos 8 )  

= - K a  cos 8 exp ( - K a  cos 8 )  cos { ( K 2  - k2)h a sin S> 

and T(k, 8) = aa[exp ( - kr cos S eosh a)  cos (kr sin 8 sinh a)]/ar 

- ( K 2  - k2)& a exp ( - K a  cos 0) sin 8 sin {(KZ - k2)4 a sin 8> 

are nearly equal when k is near K .  It is in fact not difficult to see that, near k = K ,  

T(k,  8 )  = (aae-Ks/ar) + O(K - k) .  (3.16) 

Thus, near k = K ,  (3.15) can be rewritten in the form 

2ni coth .{(a ae-Kz/ar) + O(K - k ) )  + 2R(k, 0) 

We can now (on the assumption that K a  is neither small nor large) make 
inferences about the analytic form of the coefficients. We have 

(3.18) 
- H(k - K)/pO = 2 ~ i  coth + 2R0(k) + O(K - k)$ 

and - PzmIPo = 2R,(k) + - k)*, 
where Ro(k)  and R2,(k) are the coefficients in the expansion 

R(k ,  8 )  = Ro(k )  ( a  cKZ) + X R,,(k) - 8Y2?3& 

K2rn\ka) ( a  a,)' (3.19) 

valid in the range 0 d 8 < +m. We must still find the behaviour of H ( k -  K )  near 
k = K.  We have 

ei(K-k)x - 1 x = m  1 ei(K-k)x - 1 
= [h") i ( K - k )  ]B=-z- / - - lhr (x)  i ( K - k )  ax, 

by integration by parts, 
i 1 

K - k  -1 
= --/ xV(x )dx+O(K-k ) ,  (3.20) 
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since h'(x) = 0 when 1x1 > I ,  where H ( k - K )  has been interpreted by means of 
the Rayleigh viscosity as lim H (  k - K - s ia /g ) .  We can now find the form of the 
potential E+O + 

v ~ 2 m ( k )  

K2, (ka 1 
@,(k, y, 2) = po(k) j2.i cothay(k ,  y, Z) + 2W(k, y, 2)) + L-l- Y,,(E, y, 2) 

H(k  - K )  
2ni coth a Y + 2 9  - - -  

3ni coth a + 2R0 + O(K - lC)* 

v , m ( k , y , z )  = Y2m(K,y,z) + O ( K - k ) ;  
corresponding relations hold for the regular functions Y, 3, KLm and R2m. Thus, 
on expanding the quotients in (3.21), we find that, near k = K ,  the potential has 
the form 

On substituting F ( K ,  y, x )  = e-Kz and 

this becomes 
tanha = (K2-k2)4/K = (2/K)4 ( K - k ) $ + O ( K - k ) * ,  

1 
@,(k,y ,z)  = -y-- ie-ziz ( )& @*(K, y, z )  + O( 1)  when k < K ,  h - k  2 K ( K - k )  

where the potentia1 

@ J K ,  y, z )  = 2W(K, y, z )  - 2Ro(K)F(K,  y, z )  - 2 2  :?m/z:, Y2m(K,  y, z )  (3.22) 

is identical with the potential defined by (2.1 1)-(2.14). TO show this, it is sufficient 
to note that every term on the right-hand side of (3.22) satisfies the wave equatioa 
(2.11) in the fluid, and the free-surface condition (2.13). Also the boundary 
condition (aa@.,/&) = 0 is satisfied on account of (3.19); furthermore, as 
Ky+w in (3.22), 

2m 

2W(K, y, z )  = Yoo(K, y, z ,  0) - 27rK (yI e-Ks, 

while all the other terms in (3.22) are of smaller magnitude. These are the condi- 
tions which uniquely defined @*(I<, y, z )  in 5 2 above. 

Equation (3.22) describes the behaviour of @,(k, y, z )  near k = K when k < K. 
Similarly, we can find the behaviour when k > K.  It is only necessary to replace 
Y;(k, y, z ,  a) by Yo(k, y, z ,  ia,), where tana, = (k2- K2)&/K;  in other words, to 
replace ( K -  k)* by - i ( k  - K)&. Thus 

i e-Kz +i ( 1 
)'@,(K,y,z)+O(l) when k > K .  (3:23) @l(k, y, 2) = -- K - k  7~ 2 K ( k - K )  

We can now use these results in the inversion formula 

@,(x,y,z) = - 1- @,(k, y, z )  eikxdk. (3.24) 
2n -?& 
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As was explained in $ 2  above, the singular behaviour of Q1 at k = K gives rise 
to a term, #lK(x,  y ,  z )  say, in the asymptotic expansion of #1 for large positive x.  
We find that 

where the first term is inferred from (3.20) and the second t'erm is obtained from 
the integrals jOw .$ e*iu dv = n3 e*iin. 

The first term in (3.25) represents that regular wave train which has precisely 
the normal velocity (3.3) on the cylinder r = a when x 2 1. The second term 
represents a wave decaying in the x direction. (The contribution from k = - K 
can be shown to be of smaller magnitude.) 

The result (3.25) is independent of the function h(x) appearing in (3.5).  It is 
therefore reasonable to suppose that a semi-infinite body consisting of a circular 
cylinder from x = 1 to x = 00 together with a smooth bow section will have the 
same asymptotic field if the prescribed normal velocity is the same. Let a wave 
train #,nc = ecKzeiKx be incident on such a body. The total wave field near the 
body for large x would then be expected to be 

(3.26) 

The wave amplitude thus tends to zero for fixed y and z as x-++00. In other 
words, the incident wave train is refracted away from the semi-infinite cylinder, 
leaving a comparatively wave-free zone near the body. 

What is the width of this zone! We would expect it to increase in width as 
x increases. Is the ultimate width finite or infinite? If it were finite, then for ( y ,  z )  
outside this zone we would have q5inc + N e-KzeiKx, but (3.26) holds for any 
fixed ( y ,  2). Thus we conclude that the width of the comparatively wave-free zone 
tends to 00 as X J O O .  Our method gives no information about the wave field in 
any other direction. For this the integral (3.24) would need to be evaluated for 
both x and y Iarge, and this would depend on values of k not nearly equal to K.  
However, when K x  >> K Iyl >> 1,  the wave-free terms in (3.13) can be neglected, 
and the field can then be expressed in terms of Fresnel integrals. The calculation 
(which is omitted) shows that the width of the wave-free zone is of order K-l(Kx)&. 

4. Problem 2. A distributed pulsating source on an infinite cylinder 
We shall next study a potential &(x, y ,  z )  e-iut satisfying the same equation of 

continuity (3.2) and the same free-surface condition (3.4) as #1, but satisfying 
on r = a the boundary condition 

- = (  v ( x , 8 )  when 1x1 ,< 1, 
ar 0 when 1x1 > I ,  

where it is assumed for simplicity that v(x,8) is an even 
restriction can easily be removed.) The radiation condition 

function of 8. (This 
a t  infinity, obtained 
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by means of the Rayleigh viscosity, is evidently the same as in 4 3. Let O2 and V 
be defined by the equations 

#2(x, y, z )  e-ikx dx, 

V(k,  8)  = u(x, 0) e-ikxdx. s“, 
Then, as in 4 3 above, O2 must have an expansion of the form 

(4.3) 

It follows that 

where the functions V ( k ,  8) and (aaY,,/ar) are regular functions of k near li’. 
The analytic forms of pi2) and pi% can now be found in much the same way as 
in 5 3 above. As before, the left-hand side of (4.6) is of the form 

and it follows that 
27r i~o tha{ (aae -~~ /ar )+O(K-k ) )+  2R(k, 8) )  (4.7) 

and - 

where V, is a real normalizing constant, and where Ti: and RhZ are the coefficients 
in the expansions 

and 

Thus 

(4.9) 

(4.10) 

(4.11) 
where F,9, Ti: and RAz are regular functions of k near A‘, while 

tanh a = (2133  ( K -  k)* + O(K - k)* 
has a branch point. On expanding the quotients in (4.11) and proceeding as in 
3 3 above, it is found that 

0 2 ( k ,  y, z )  = regular function of k 

+ smaller terms of order k - K.  (4.12) 
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It is now not difficult to  show, as in $ 3 ,  that the expression in square brackets, 
0 say, satisfies the wave equation (2.11) and the boundary condition (2.13) a t  
the free surface, with k = K .  Also it can be shown that aO/ar = 0 on r = a. It 
follows that 0 is a multiple of @*; in fact, 0 = i@*, as can be seen by examining 
the behaviour for large I yI . Thus 

Q 2 ( I c ,  y, z )  = regular function of Ic 

+- 2n:2h2) (i)' (K-k)g@>,(K,y,z)+smaller terms when k < K .  (4.13) 

When k > K ,  the second term of (4.13) must be replaced by 

(4.14) 

It may be noted that is the coefficient of (a ae-Kz/ar> in the expansion 

see (4.9) above. Thus the coefficient in (4.13) depends on 
m 

V ( K ,  0) = ( v(x,  0) e--iKzdx, 
J -a 

i.e. on the details of the prescribed velocity distribution. 
It now follows that the leading term for large x in the expansion of 

(4.16) 

1 x [ - i s =  ( K -  k)$ eikxdk + 
- W  

when y and z are kept fixed and x-+ + co. Here the equations 

have been used. (For the asymptotic treatment of Fourier integrals see Lighthill 
1958, chap. 4.) Thus, apart from the obvious phase factor eiKz, the distribution 
of pressure over each section x = constant is ultimately the same and is described 
by the function iD,(K, y, z )  but the amplitude of the variation decreases like x-8. 
(The contribution from k = - K is of smaller magnitude.) The magnitude of the 
pressure is described by the proportionality factor &/Ti2), which is the first 
coefficient in the expansion (4.15) above and depends on 

V ( K ,  0) = 1 v(x, 0) e--iKxdx: 

and thus on the prescribed velocity distribution. A lengthy calculation would be 
needed to determine G/Thz). 

W 

- W  
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5. Problem 3. A long ship moving with constant forward speed U in 
still water 

Let co-ordinate axes be fixed in the ship. In these co-ordinates the motion is 
steady, and a fixed Kelvin pattern is formed relative to the ship. As before, let 
the ship be replaced by an infinitely long cylinder of semicircular cross-section 
on which a distribution of normal velocity is prescribed. Then the velocity 
potential is of the form 

+ ( X )  y, 2) = ux $- +3(x, y, 4, (5.1) 

where 

in the fluid, with the boundary conditions 

a+,/ar = e3(x, 0 )  on r = a ( 5 . 2 )  

and U2a2$3/ax2 = ga$,/az on the free surface z = 0. (5.3) 

The latter condition is the well-known boundary condition of linearized steady 
thin-ship theory, but it is not difficult to see that the usual derivation (Havelock 
1936) depends only on the decomposition (5.1), and that (5.3) is therefore applic- 
able to the present problem. The appropriate radiation condition remains to be 
determined. Let a small positive Rayleigh viscosity E be introduced. The free- 
surface boundary condition becomes 

cf. Havelock (1936). Let the wavenumber KO be defined by 

KO = g/U2.  (5.5) 

with a similar definition for 03€) then we have, on z = 0, 

by integration by parts, 

= - U2k203, + UsikO,, = - g c ( k )  Q3€) 

where K ( k )  = U2k2/g- Usik/g. 
say, (5.6) 

We now proceed as in § 2 above. When U2k2/g > [ k l )  let a positive parameter /3 
be defined by the equation 

Ikl cosh/3 = U2k2/g = k2/Ko, 
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and a parameter p, near p by the equation 

Ikl coshp, = U2k2/g-&/g; 
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thus (5.7) 

When € + O f  it  is easy to see that p,+p from below when k > KO, and the 
appropriate wave-source potential is therefore Y$( I k[, y, z, p), where p is the real 
positive root of coshp = lkl/Ko. We observe that tanhp = (k2-K$/lkl has a 
branch point when k = KO. (Similarly, when k < -KO,  the appropriate wave- 
source potential is ‘Yi ( I&] ,  y, x ,  p).) Thus, when k > KO, we write 

~ z m ( l k ) l ,  Y, z ,P) ,  (5.8) 
Pi%) ao(k, y, 2) = ~ 3 ) m  yz  ( I ki, y, 2, p) + 2 

where 

p h 3 ) ( ~ ~ ) + B @ ( u ~ )  ayz a y 2 m  = uV(k ,0 )  when r = a,  O < 0 < &r; 

here 

The calculation is now identical with that of $ 4 above, except that the factor 
i cotha multiplying (aae-Kz/ar) in (4.7) must be replaced by - i  cothp. Thus, 
from (4.13), when k > KO, 

Q3(k, y, z )  = regular function of k 

(k-Ko)*@,,(Ko,y,z)+smaller terms. (5.9) 

When 0 < k < KO, the calculation of § 4 must be modified by replacing cot aI by 
cot PI; it  is then found that 

@,(k, y, z )  = regular function of (.KO- k)* @*(KO, y, 2). (5.10) 

Similar calculations can be made when k is near -KO,  and then the leading 
terms in 

9 3 ( x , y , z )  = - j ~ ~ ( k ,  y, z )  e ikz  dk 
2n -m 

can be found as in $4 above. The contribution from k near KO is found to be 

when x++oo,  where &/Ti3) is the complex quantity in the expansion corre- 
sponding to (4.15), but with V, instead of V ,  Ti% instead of Ti%, and KO instead 
of K .  Similarly the contribution from k near - K O  can be calculated, and is found 
to be the complex conjugate of (5.11); this was to be expected since $3(x,y,z) 
must be real. Thus, as x+ + 00, while y and z remain fixed, 

When x+- 00, the potential is of much smaller magnitude. 
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6. Discussion and conclusions 
In this paper we have been considering the effect of a long cylinder on waves 

travelling in the axial direction. In  our first problem, which corresponds to 
incident head seas, the amplitude near the stern section decayed like x-4, whereas 
head seas travelling along a plane vertical wall do not decay. In  our second 
problem the waves were generated by a pulsating normal velocity and decayed 
like x-8 in the axial direction; the corresponding decay along a plane vertical 
wall is like x-4. In  our third problem a Kelvin pattern was generated by it 

prescribed normal velocity component travelling with constant velocity and the 
transverse waves near the cylinder were found to decay like x-4 whereas the 
Kelvin pattern near a plane wall (or in open water) decays like x-4. In  each of 
these three cases the decay is therefore more rapid than near a plane wall: the 
wave pattern is refracted away from the cylinder. The width of the comparatively 
wave-free zone tends to 00 as x tends to 00. These results were obtained for a 
cylinder of semicircular cross-section, but can be generalized to arbitrary 
(constant) cross-sections by formulating the problems in terms of integral 
equations, as in 11. The result for our first problem is consistent with the results 
of Faltinsen (1973), which, as we now see, must represent the asymptotic 
behaviour of the waves when x-tco in directions close to the axial direction. 
Faltinsen formulated his problem in terms of slender-body theory and matched 
asymptotic expansions. 

We still have to discuss the thin-ship result obtained in 11. It has just been 
noted that in problem 2 the amplitude decays like x-3 along a cylinder and like 
x-k along a plane wall. It is reasonable to suppose that the rate of refraction 
depends on the wavelength as well as on the cross-section. When Ka is large, i t  
may be conjectured that the refraction is small and only becomes effective a t  
very large distances; when Ka is small or moderate, on the other hand, the effect 
of the curvature of the cross-section is felt even in the vicinity of the source. 
(Similar results would be expected in the other two problems.) It would be 
interesting to extend our calculation to large and to small values of Ka. 

Our conclusions in each case depend on the analytical form of @( k, y, z )  near 
a critical wavenumber. A typical equation is 

Q2(k, y, z )  = regular function of k 

+* 27rTb2) ( ' )*(k-K)*Q,(K,  fl y,z)+smaller terms 

when k > K .  The simplicity of this expression is in contrast to the involved 
method of derivation, and a simpler derivation would be desirable. 
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